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ABSTRACT
Previous studies showed performance benefits with correct
automation, but performance costs when the automation was
incorrect (i.e. provided an incorrect course of action), particularly as
degrees of automation increased. Automation researchers have
examined individual differences, but have not investigated the
relationship between working memory and performance with
various degrees of automation that is both correct and incorrect. In
the current study, working memory ability interacted with
automation reliability and degree of automation. Higher degrees of
correct automation helped performance while higher degrees of
incorrect automation worsened performance, especially for those
with lower working memory. Lower working memory was also
associated with more trust in automation. Results illustrate the
interaction between degree of automation and individual
differences in working memory on performance with automation
that is correct and automation that fails.

KEYWORDS
Human automation
interaction; degrees of
automation; individual
differences; working
memory; trust; task load;
mental workload

Relevance to ergonomics theory

The current results confirm the important role of working memory ability in the use of automation:
individuals with high working memory ability seem most able to perform the task and evaluate the
automation by appropriately calibrating their trust, while those lower in working memory ability
inappropriately calibrate their trust and rely on automation, even when it is incorrect.

Introduction

Commercial pilots are supported by sophisticated technology in the cockpit, soldiers are
supported with automated targeting systems, drivers are supported by blind spot warn-
ings, and consumers with modern mobile phones can get restaurant recommendations
tailored to their location. In each of these examples of automation, a system is carrying
out a task that once was carried out by the user, thus alleviating some work. For example,
blind spot warning systems in vehicles constantly monitor areas that are difficult for the
driver to view. Without this system, the driver would have to incur additional work to
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maintain a high level of attentional vigilance but also would need to adjust their position
to see the blind spot.

Forms of automation can be characterised along two dimensions: type and level. The
type of automation is characterised by the stage of information processing supported: infor-
mation acquisition, information analysis, decision-making, or action implementation. The
first two stages are often combined and called ‘information automation’ while the latter
two stages are often combined and referred to as ‘decision automation’. The level of auto-
mation denotes the allocation of the task, from a low level allocated to the automation
(manual) to a highly autonomous level (Parasuraman, Sheridan, and Wickens 2000; Sheri-
dan and Verplank 1978). Collectively, changes in types and levels of automation can be
referred to as degrees of automation (Onnasch et al. 2014) with higher degrees of automa-
tion supporting later stages of information processing (e.g. decision-
making rather than attention) and more of the task allocated to the automation.

A growing body of research has examined how human performance is affected by fail-
ures of highly reliable automation (Crocoll and Coury 1990; Endsley and Kaber 1999;
Galster, Bolia, and Parasuraman 2002; Lorenz et al. 2002; Onnasch et al. 2014; Rovira,
McGarry, and Parasuraman 2007; Sarter and Schroeder 2001; Wickens and Xu 2002;
Wickens and Dixon 2005). The interest is motivated by the severe human performance
consequences of highly reliable, yet imperfect automation that can cause out-of-the-loop
unfamiliarity (Wickens 1992), automation complacency (Parasuraman, Molloy, and Singh
1993), loss of situation awareness (Endsley and Kiris 1995), passive monitors versus active
controllers (Lee and Moray 1994) and skill degradation (Bainbridge 1983).

In a meta-analysis of 18 studies, Onnasch et al. (2014) found performance benefits for
correct automation and performance decrements after an automation failure with higher
degrees of automation. Of most interest were the decrements in performance found when
automation support moved from information automation to decision automation. Thus,
an important goal for designers is to mitigate performance costs associated with failures
of higher degrees of automation by facilitating appropriate trust calibration (e.g. Rovira
et al. 2014). One approach is to better understand the role of individual differences in
cognitive ability on the appropriate use of automation in complex decision-making tasks.

Individual differences

Some early research explored sources of individual differences and performance with
automation (e.g. Singh, Molloy, and Parasuraman 1993). However, these early investiga-
tions focused on what could be considered personality characteristics (e.g. complacency
potential; Singh, Molloy, and Parasuraman 1993) and complacent behaviour due to less
monitoring of the automated task (Parasuraman and Manzey 2010). Another source of
individual differences in use of automation may be working memory (Baddeley 1986;
Engle 2002). Working memory plays a key role in executive control processes which are
thought to underlie effective decision-making and situation awareness (Endsley and Kiris
1995). Thus, individuals of higher working memory ability should be better able to gener-
ate, remember and evaluate consequences of different courses of action than individuals
with low working memory ability. However, to date, examination of working memory’s
influence on automation use has been indirect and has not included various degrees of
automation. For example, Chen and Terrence (2009) investigated the effects of
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automation failures and individual differences in perceived attentional control, a compo-
nent of working memory (Shipstead et al. 2014), in a military multitask environment. Per-
ceived attentional control was assessed using a subjective self-assessment of individuals’
attentional focus and shifting. They found that those with high perceived attentional con-
trol were more negatively affected by false alarms, while individuals with low perceived
attentional control suffered more with miss-prone automation. In the context of their
task (military gunner and robotics operator), perceived attentional control was an impor-
tant moderator of how operators reacted to automation false alarms and misses.

More direct evidence of the importance of individual differences in working memory
comes from a study by de Visser et al. (2010). They investigated the role of working mem-
ory in an automated unmanned aerial vehicle task by varying task load (low, high) and
automation reliability (manual, 100% reliable automation, and 20% reliable automation).
Participants completed the Operation Span working memory test (Engle 2002). Working
memory scores significantly correlated with performance on the automated task. For each
automation task performance measure, linear models that included working memory
accounted for more of the variance in performance as compared to the linear models
without the working memory measure. Thus, when individual differences in working
memory were accounted for, more variation in performance with automation was
explained. Critically, however, this study did not manipulate the degrees of automation.
Also, as the analysis combined both automation correct and automation failure trials for
prediction in linear modelling, making it unclear if working memory influenced perfor-
mance on only trials where the automation was correct or on trials where the automation
failed.

Hypotheses

The purpose of the current research was to address two significant gaps in the literature
on individual differences and automation: indirect measurement of working memory and
the unknown role of degrees of automation on operator performance. To examine the
role of individual differences in working memory on performance, we varied degrees of
automation and task load and measured individual differences in spatial working memory
ability (henceforth referred as working memory). This is contrasted with previous studies
that used self-reported proxies for working memory (Chen and Terrence 2009), or indi-
rect genetic markers of cognitive performance (Parasuraman et al. 2012), or have not
examined the role of degrees of automation (de Visser et al. 2010). We manipulated task
load because evidence from a review of 20 automation reliability studies suggested that
dependence on imperfect automation would be stronger under higher task load (because
the operator’s limited resources are expended; Wickens and Dixon 2007).

We hypothesised that individual differences in working memory would differentially
impact performance with various degrees of automation:

(1) Consistent with previous literature, we hypothesised that:
a. decision accuracy would be better with correct automation compared to manual

control (a manipulation check)
b. there would be no effect of task load on decision accuracy when the automation

was correct.
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c. the differential impact of information versus decision automation would be evi-
dent with automation failures, especially when task load was high. While partici-
pants would not know if a given trial would be a correct trial or an automation
failure trial, if participants are relying on the automation, they should make an
appropriate decision when the automation was correct, but accuracy should
degrade with an automation failure.

(2) As suggested by Parasuraman et al. (2012), we expected individuals with higher
working memory ability to show less of a performance decrement when the auto-
mation failed compared to individuals with lower working memory ability. This
key relationship is expected because working memory is associated with reduced
attentional control (Unsworth and Engle 2007), which may inhibit the ability of
individuals with lower spans to monitor for automation failures (Sarter, Mumaw,
and Wickens 2007). In addition, when faced with the prospect of carrying out the
task manually, low-span individuals’ reduced working memory capacity makes it
more difficult to update the contents of working memory, and thus reduces their
time available to consider and correct incorrect automation. With automation fail-
ures, high task load, and increasing degrees of automation, it was predicted that the
benefits of better spatial working memory ability would be highlighted.

(3) We expected a relationship between variations in cognitive ability and self-report
measures of trust (Lee and Moray 1994; Jian, Bisantz, and Drury 2000). Individuals
with lower working memory ability would trust the automation more compared to
individuals with higher working memory ability because individuals with lower
working memory ability would need to rely on the automation more than those
with higher ability.

Methods

Participants

A total of 86 cadets (18 women) from the U.S. Military Academy participated in this study
for extra credit. Ages ranged from 18 to 24 years (M D 20.27, SD D 1.25). One participant
was excluded due to equipment failure, and hence subsequent analysis was of 85
participants.

Stimuli and task procedures

Participants completed this study in two hours including training and breaks. Participants
first completed a spatial working memory task followed by a simulated artillery sensor-to-
shooter targeting task. Response time and accuracy were collected for all measures though
the dependent measure of interest for the sensor-to-shooter task was decision-making
accuracy, as response time was restricted for this task.

Working memory measure
A spatial working memory task assessed working memory ability (Figure 1; Greenwood
et al. 2005). A fixation cross appeared for 500 ms followed by one, two, or three black dots
(1.65! in diameter, each indicating a target location) at random screen locations for
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500 ms. Simultaneously with dot offset, the fixation cross reappeared for 3 s. At the end of
the delay, a single red test dot appeared on the screen. This test dot appeared either at the
same location as one of the target dots (match condition) or at a different location (non-
match condition). On non-match trials, the distance between the correct location and the
test dot varied randomly over three levels (»1.3!, 2!, or 2.6! of visual angle). Participants
indicated whether the test dot location matched one of the target dots using their index
fingers to select one of two responses on a keyboard.

A composite working memory score was created consisting of accuracy on trials (col-
lapsed across distances) at three levels of memory load, and in both match and non-match
conditions. Z-scores were computed for each of the six conditions (three levels of load,
match/non-match) and a mean was taken to form a composite for each individual. Thus,
this composite score was not standardised, but reflected the average of the standardised
scores.

Artillery sensor-to-shooter targeting task
A low-fidelity software simulation of an artillery sensor-to-shooter targeting system was
used with various degrees of automation (Rovira, McGarry, and Parasuraman 2007). The
artillery task consisted of three components in separate windows: a terrain view, a task
window, and a communications module (Figure 2). A two-dimensional terrain view of a
simulated battlefield displayed red enemy units (labelled E1, E2, … Ex), yellow friendly
battalion units (B1, B2, and B3), green friendly artillery units (A1, A2, … Ax), and one
orange friendly headquarter unit (HQ). Participants were required to identify the most
dangerous enemy target and to select a corresponding friendly unit to engage in combat
with the target. The criteria for enemy unit engagement selection (derived by consulting
with military subject matter experts) was based not only on the closest distance between it
and friendly units but also the relative distance to the HQ unit, with a red unit that was
closer to the HQ than another red unit classified as more dangerous and requiring engage-
ment. Specifically, the following criteria had to be met: (1) only artillery units could
engage enemy units in combat; (2) the friendly unit closest in distance to an enemy unit
was to be given the highest priority for combat engagement; (3) if two friendly units were
equally distant from an enemy unit, or if a friendly unit could engage in combat with two

Figure 1. Working memory measure used to indicate spatial working memory capacity at three levels
of load.
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enemy units that were both an equal distance away from the friendly unit, then it was
important to select the unit closest to headquarters.

The bottom left of the task window provided the different degrees of automation sup-
port. This window was absent in the manual, unaided conditions. The lowest degree of
automation support was information automation, which provided an exhaustive list of all
possible engagement combinations ordered alphabetically, including the distances
between enemy-friendly units, and headquarters. Because no explicit suggestion for deci-
sion-selection was provided, this corresponded to information automation in the Para-
suraman et al. (2000) taxonomy. This is contrasted with the manual, unaided condition
which left the participants to calculate distances on their own. The next higher degree of
automation, low-decision automation, gave a list of all possible engagement combinations
as before but the listings were prioritised by distance with the best selection first and the
worst choice last, making this a form of decision automation. The automation determined
priority by enemy-friendly distances with the friendly unit closest to HQ getting a higher
priority. In the medium-decision automation condition, the highest degree of automation
in this study, the participant was provided only the top three options for engagement as
ordered by distance, including the distances between all enemy targets, friendly units, and
headquarters (Figure 2). Our distinction between low- and medium-decision automation
is informed by Sheridan and Verplank’s (1978) distinction between ‘level 2’, where the
automation shows a complete list of decision alternatives, and ‘level 3’, where the automa-
tion narrows the selection of alternatives to a few.

Participants could either use the assistance of the automation or make their own
enemy-friendly unit engagement decisions, but were required to respond within 10 s.

Figure 2. The sensor-to-shooter task interface. The example shows medium-decision automation con-
dition with low task load. Note that with this degree of automation, the target pairings in the automa-
tion are ordered in ascending distance by enemy-friendly (third column) and friendly HQ (fourth
column).
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Participants were able to verify the automation by reviewing the terrain view and manu-
ally computing distances themselves by counting grid boxes. After they made their selec-
tion, or if 10 s had elapsed, the trial ended and the terrain map was replaced with a new
grid of enemy, friendly, and HQ units.

To increase the difficulty of completing the sensor-to-shooter task, a call for communi-
cations (call sign) appeared every 6 s and remained displayed until the next call sign.
Participants were required to click on the ANSWER button every time their personal call
sign appeared while they were selecting units. The personal call sign appeared randomly
around every 40–50 s into the experiment. This secondary task was always performed;
there was no single task condition.

Workload and trust measures
To examine perceived workload of the task, participants completed a computerised
version of NASA-Task Load Index (TLX) after each block (Hart and Staveland 1988). Par-
ticipants rated their trust in automation after each automation-present block using an on-
screen visual analogue scale ranging from 0 to 100 (adapted from Lee and Moray 1994)
and completed a longer trust questionnaire at the end of the study (adapted from Jian,
Bisantz, and Drury 2000). Example questions at the end of each block included: To what
extent did you rely (i.e. actually use) the automation aid in this scenario? To what extent
do you think the automation improved your performance in this scenario compared to
performance without the automation?

Experimental design

The experiment was a 4 (Degree of automation support: manual, information automation,
low-decision automation, and medium-decision automation) £ 2 (Task load: low, high)
within-subjects design. Task load was manipulated by increasing the number of friendly
and enemy units from three to six. As Wickens and Dixon (2005) found that automation
reliability below a certain point (70%) was worse than no automation at all, the overall
reliability of our automation was set at 80%.

Each of the eight conditions, 4 (Degree of automation support: manual, information
automation, low-decision automation, and medium-decision automation) £ 2 (Task
load: low, high), constituted a block of trials during the experimental task. Participants
were informed that although the automation was highly reliable, it was not 100% reliable,
but no further information on reliability was given. During practice, participants com-
pleted eight correct trials at both task load levels for each degree of automation support
before a new degree of automation support was introduced. The order of the degrees of
automation support was counterbalanced between participants (participants either
started with manual, information, low-decision, or medium-decision conditions). Within
each of the four conditions, task load was counterbalanced so that participants either
started with low or high task load. Each of the eight blocks contained 40 trials. Trials
were created by an algorithm that placed pieces randomly on a generic topographic map
with the only constraint that battalion units (yellow) were always adjacent to enemy units
(red). This was based on consultation with subject matter experts to create layouts that
were plausible and realistic. Otherwise, enemy, friendly, and HQ positions were ran-
domly placed.

THEORETICAL ISSUES IN ERGONOMICS SCIENCE 7



Of the 40 trials per condition when automation was present (information, low-
decision, and medium-decision conditions), 32 trials presented correct automation and 8
were incorrect automation. The automation incorrect trials were randomly dispersed
throughout the block with the constraint that the first automation failure in any block did
not occur until past the eighth trial to allow participants to build trust and not immedi-
ately discount the automation (Wickens and Xu 2002). Each participant completed a total
of 320 test trials (8 blocks of 40 trials each).

The dependent variable was accuracy of enemy-friendly engagement selections (hereaf-
ter referred to as decision accuracy). Decision accuracy was calculated as the percentage of
trials in which the participant correctly selected the optimal enemy-friendly pairing. Other
measures included NASA-TLX (mental workload), trust after every block (for blocks with
automation support), and trust at the end of the study (measured once).

Results

Repeated measures analyses of variance (ANOVAs) were conducted to evaluate the effects
of degrees of automation, task load, and automation correctness (correct/incorrect) on
decision accuracy, subjective mental workload, and trust. Multilevel linear models
(MLMs) were conducted to measure the role of individual differences in cognitive ability
on task performance under the various manipulations.

Manual control versus automation

Collapsing across the three degrees of automation (information, low-decision, and
medium-decision), we compared decision accuracy without automation (manual) to trials
with correct automation and trials with automation failures. A 3 (Automation correctness:
manual, correct automation, automation failure) £ 2 (Task load: low, high) repeated
measures ANOVA revealed a significant interaction between automation correctness and
task load, showing that task load had different effects on decision accuracy depending on
automation correctness conditions, F(1,84) D 51.9, p < .05, hp

2 D .38 (Figure 3). Follow-
up pairwise comparisons, Sidak-adjusted for multiple comparisons, showed the source of
the interaction was that higher task decreased decision accuracy in both the manual con-
dition (low task load M D .75, SD D .14; high task load M D .61, SD D .16; p < .05) and
the correct automation condition (low task load M D .88, SD D .07; high task load M D
.79, SDD .10; p< .05), but not the automation failure condition (p> .05). The lack of dif-
ference between load conditions might have been due to a floor effect when automation
failed (i.e. performance was so low when automation was incorrect that task load had no
further effect).

Multilevel models

The manual control condition was not included in the next series of analyses because we
examined the effects of automation failures in each degree of automation, and there could
be no automation failure in the manual condition.1 We next used multilevel modelling to
examine the influence of individual differences in working memory and decision accu-
racy. MLMs are regression-based and match some of nomenclature of regression, namely
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fixed effects. However, MLMs can also produce random effects. For example, a regression
predicts behaviour under the conditions in the study, a fixed effect. A random effects
model extends that prediction beyond the conditions, for example, predicting perfor-
mance under very high automation when the study only included a high-automation con-
dition. MLMs are a preferred form of analysis for nested data structures, where multiple
observations are collected from each participant, as they allow the simultaneous estima-
tion of intra-individual and inter-individual differences and compute residuals at each
level in the hierarchy (Raudenbush and Bryk 2002). Finally, similar to regression, MLM
allows for the inclusion of dichotomous and continuous predictors; however, regression
treats nested data as independent observations and is more likely to produce Type I error
(Hox and Bechger 1998; Tabachnick and Fidell 2007). Multilevel models recognise the
nested structure of the data and do not underestimate the standard errors of the regres-
sion coefficients, thus reducing the chance of Type I error (Raudenbush and Bryk 2002).
Hoffman and Rovine (2007) provided an accessible discussion of the usefulness of MLMs
in human factors research that support the choice of this analysis for the current data.
Multilevel modelling was implemented using PROC MIXED through SAS, version 9.4.

A two-level hierarchical model assessed the effects of the within-person variables of
degrees of automation, task load, automation correctness, the between-person predictor of
working memory score, and their cross-level interactions on decision accuracy in the sen-
sor-to-shooter task. Multiple responses were nested within the 85 participants as each par-
ticipant performed the sensor-to-shooter task under various degrees of automation support
and task load on trials where the automation was either correct or failed, meaning that the
accuracy of their responses was nested within those variables. In turn, the within-person
manipulations were nested within the attributes of the participant (i.e. their working mem-
ory ability). We used a model-building approach where we first ensured there was signifi-
cant variability at both levels to allow predictors to be entered at those levels (Model 1),

Figure 3. Decision accuracy as a function of task load and automation correctness. Bars indicate stan-
dard error.
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then added the within-participant predictors manipulated in the task (Model 2), and finally
added the between-participant predictor of working memory score (Model 3). Each model
was compared to the last using Akaike’s information criterion (AIC) values to ascertain if
the added predictors increased the quality of the model.

Model 1: No predictors. The first step was to run a fully unconditional model, one with-
out any predictors (Table 1: Model 1), to discover the amount of within- and between-
person variance in accuracy. This unconditional model served two purposes: first, to
determine if there was significant variance at both the within-person (s2) and between-
person (t00) levels in accuracy and, second, to provide a baseline to assess the fit of subse-
quent multivariate multi-level models (Models 2 and 3). The unconditional model
revealed significant variance at both levels, with 97% of the variance at the within-person
level (s2 D 0.149, z D 21.48, p < .001) and 3% of the variance at the between-person level
(t00 D 0.005, z D 1.81, p D .034). Thus, subsequent models were run to explain the vari-
ance in accuracy using the within-person predictors of task load, automation success/fail-
ure, degree of automation support, and the between-person predictor of working memory
ability.

Model 2: Within-person variables. Model 2 examined the effects of the within-person
manipulations on accuracy (Table 1) and found that task load, automation correctness,
and degree of automation accounted for 67% of the 97% within-subject variance. Model
fit using the AIC improved from 976.2 to ¡12.6 (lower values indicate better fit).

There was a three-way interaction of degrees of automation, task load, and automation
correctness, F(1,915) D 39.00, p < .0001. A simple-effects analysis showed that on correct

Table 1. Unstandardised coefficients of multilevel models of the within- and between-person effects of
predictors on accuracy in a sensor-to-shooter task.

Model 1 Model 2 Model 3

Unconditional
model

Random coefficients
regression

Slopes and
intercepts

Estimate SE Estimate SE Estimate SE

Fixed effects
Intercept 0.554""" 0.014 0.346""" 0.038 0.346""" 0.038
Between-person
Working memory composite score (WM) 0.114 0.060

Within-person
Automation Support (AutoSupp) ¡0.029 0.017 ¡0.032 0.017
Task load 0.146"" 0.052 0.149"" 0.051
Reliability 0.276""" 0.051 0.274""" 0.051
Task load£ AutoSupp ¡0.081""" 0.024 ¡0.080""" 0.024
Task load£ Reliability ¡0.501""" 0.073 ¡0.502""" 0.072
AutoSupp£ Reliability 0.154""" 0.024 0.159""" 0.024
Task load£ AutoSupp£ Reliability 0.210""" 0.034 0.209""" 0.033

Cross-level
Task load£ WM ¡0.036 0.065
AutoSupp£ WM 0.011 0.026
Reliability £ WM 0.080 0.065
Task load£ AutoSupp£ WM 0.013 0.030
Reliability £ AutoSupp£ WM ¡0.089"" 0.030

Random effects
s2 0.149 0.007 0.049 0.002 0.047 0.002
t00 0.005 0.003 0.013 0.003 0.011 0.002
Model fit statistic
A1C 972.2 ¡12.6 ¡28.6

Working memory composite score was grand-mean centred. SE indicates standard error.
""p < .01, """p < .001.
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automation trials, a higher task load decreased accuracy only under information automa-
tion (p < .05). This can be seen on the left panel of Figure 4 where accuracy in the infor-
mation automation condition declined as task load increased, while low and medium
automation accuracy were unaffected. For trials with automation failures, pairwise com-
parisons showed that increasing task load significantly decreased accuracy only with
medium-decision automation (p < .05, Figure 4, right panel). In sum, the interaction can
be summarised as increased degrees of automation helped to buffer the degrading effects
of task load when automation was correct, but amplified the negative effects of task load
when it was incorrect. Note that this lower accuracy at high load on automation failure
trials was due to the medium decision support condition scoring poorly, a distinction that
could not be made in the earlier repeated-measures ANOVA analysis where automation
conditions were combined. Said another way, increased task load hurt the lowest degrees
of automation when it was correct but particularly hurt the highest degrees of automation
when in error.

Model 3: Cross-level interactions. We expected individuals with higher working mem-
ory ability to show less of a decrement with higher degrees of automation when the auto-
mation failed as compared to individuals with less working memory ability. With
automation failures or high task load, it was predicted that the benefits of having better
working memory ability would be amplified (equation available in the Appendix). A third
model was conducted to include working memory ability to examine these hypothesised
cross-level interactions; this added slope as a random effect to the model.

As in Model 2, Model 3 revealed a three-way cross-level interaction of automation cor-
rectness, degrees of automation, and working memory ability (Table 1; F(1,894) D 8.11,
p D .005). Model fit using AIC improved from ¡12.6 to ¡28.6, indicating the benefit of
considering individual differences in working memory on accuracy with automation
(Figure 5). Task load was controlled for in this model and included as a factor in hypoth-
esised interactions. When automation was correct, a benefit for higher working memory
occurred solely with information automation. Simple-effects analyses showed that when

Figure 4. Decision accuracy as a function of automation correctness, task load, and degree of automa-
tion. Bars indicate standard error.
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the automation was incorrect, across all degrees of automation, higher working memory
participants outperformed lower working memory participants t(1,410) D ¡8.01, p <

.001 and t(1,410) D ¡12.87, p < .001.

Trust

Trust after every block. Figure 6 shows participants’ subjective ratings of trust and self-
confidence (at the end of every automation-present block (six measurements)). The inter-
action of degrees of automation and task load was significant, Wilks’ lambda D .64,
F(8,66) D 4.56, p < .05, hp

2 D .36. Follow-up pairwise tests showed that the source of the
interaction was a significant decrease in self-reported reliance (question 2) and decrease
in the belief that automation improved performance (question 4) when task load
increased but only in the information automation and low-decision automation
conditions.

Trust at the end of the study. Trust was additionally measured once at the end of the
study using a questionnaire adapted from Jian, Bisantz, and Drury (2000). Through this
trust measure, we produced two values: positive and negative perceptions of automation.
Lower working memory scores were associated with more agreement with positive per-
ceptions of automation, r D ¡.22, p < .05, while higher working memory scores were
associated with more agreement with negative perceptions of automation; r D .24,
p < .05. These correlational findings support the role of working memory ability in use of
automation: those ablest to perform the task and evaluate the automation appropriately
calibrate their trust; while those lower in working memory inappropriately calibrate their
trust in automation and rely on it, even when it fails.

Figure 5. Decision accuracy as a function of automation correctness and degree of automation. Low
WM was 1 SD below the mean and high WM was 1 SD above the mean.
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Subjective ratings of mental workload

Lower degrees of automation resulted in higher mental workload and increased mental
workload at high task load, but there were no differences with the highest degree of auto-
mation (Figure 7). A 4 (Degrees of automation: manual, information, low-decision,
medium-decision) £ 2 (Task load: low, high) repeated measures ANOVA revealed the
main effects of degrees of automation, F(3,219) D 61.7, p < .05, hp

2 D .46, task load,
F(1,73) D 44.1, p < .05, hp

2 D .38, and the interaction between degrees of automation and

Figure 6. Trust was assessed at the end of every block. Bars represent standard error.

Figure 7. Perceived workload as a function of degree of automation and task load.
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task load, F(3,219) D 6.7, p < .05, hp
2 D .08. Pairwise comparisons showed that the source

of the interaction was an effect of task load on perceived workload (higher task load
resulted in higher perceived workload) for manual, F(1,73) D 25.7, p < .05, hp

2 D .26,
information automation, F(1,73) D 33.7, p < .05, hp

2 D .32, and low-decision automation,
F(1,73) D 4.3, p < .05, hp

2 D .06, but not with medium-decision automation.

Discussion

Using a simulated automated targeting task, we showed that the extent to which an opera-
tor experienced both the costs of automation failures and the benefits of correct automa-
tion depended on individual differences in working memory. Our findings that working
memory ability is related to trust in automation suggest more work should consider this
individual difference.

First, our study verified that operators would perform better with correct automation
compared to manual control. Second, while task load did not differentiate performance
when the automation was correct for low- and medium-decision automation, we did see
degraded performance with information automation and high task load compared to
information automation and low task load (Hypothesis 1b). Finally, our study showed
that with automation failures, there was no difference in accuracy with information auto-
mation and low-decision automation between low and high task load but accuracy
declined at high task load with medium automation (Hypothesis 1c). These results dem-
onstrate an interesting difference between lower degrees of automation (information and
low-decision) and higher degrees of automation (medium-decision). The distinction
between lower and higher degrees of automation stems from what is being automated
(automation that moves to later stages within the information processing model) and
how much is being automated (levels) (Onnasch et al. 2014).

It appears that lower degrees of automation can mitigate some of the performance pen-
alty of increased task load when automation is incorrect, while performance significantly
declines with automation failures and higher degrees of automation. Lower decision accu-
racy with increased task load may occur because the further along the information-
processing continuum that automation supports the operator (e.g. cognitive versus per-
ceptual), the more detrimental automation failures are because operators will not have
generated their own courses of action (Wickens and Xu 2002).

A critical hypothesis regarded the role of individual differences in working memory
and automation performance (Hypothesis 2). The MLM showed cross-level interaction
between working memory, automation support and automation correctness. Performance
was generally positively affected by increasing, correct degrees of automation but espe-
cially for those with lower working memory. Working memory did not differentiate accu-
racy with correct automation support above that was above information automation.
Low- and medium-decision automation may have reduced the working memory demands
of the task. Correct and increased automation support was especially beneficial for those
with lower working memory (with maximal differences by working memory for informa-
tion automation).

These results extend the literature by showing that there are individual differences in
the degree to which automation benefits and hurts performance. When automation failed,
accuracy declined as the degree of automation increased and those with lower working
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memory were more severely impacted by automation failures than those with higher
working memory. The source of this low working memory penalty is likely to be related
to the new and higher task requirements with incorrect, high-degree automation. When
presented with incorrect automation, and a realisation that it is incorrect, low-span indi-
viduals must now deploy critically constrained resources to suppress either competing or
intrusive responses (Unsworth and Engle 2007; Conway, Cowan, and Bunting 2001), and
then manually calculate a correct course of action. Our correlation (presented in footnote)
confirmed that manual calculation in this task to be working memory-intensive. In a
neuro-genetic study using the same task as used in this study, Parasuraman et al. (2012)
similarly theorised that the link between performance in this task and working memory
abilities came specifically from the need to, when automation was incorrect, update the
contents of working memory with new information.

When the degree of automation is low and correct, those with higher working memory
outperformed those with lower working memory. Taken together, these results supported
Hypothesis 2 regarding the effects of degree of automation and working memory. Our
results are the first empirical confirmation of the link between automation performance
and individual differences in working memory as suggested by previous researchers (de
Visser et al. 2010; Parasuraman et al. 2012), but also extend the literature by further speci-
fying the automation conditions (degree of automation and automation correctness)
under which working memory affects performance.

Finally, Hypothesis 3 predicting a relationship between working memory and trust in
automation was supported. Working memory was significantly negatively correlated with
measures of trust: individuals with higher working memory ability had fewer positive per-
ceptions of automation and more negative ones.

Conclusion

Knowing how operators will perform with highly reliable, but imperfect degrees of auto-
mation at different task loads is enhanced if we understand the impacts of individual dif-
ferences in working memory on human automation interaction. Our results add detail to
the conventional wisdom that higher degrees of automation help performance and auto-
mation failures at higher degrees of automation harm performance: working memory is a
crucial differentiator of how people behave with automation. This knowledge may be use-
ful in the design of automated systems that alter the degree of automation based on an
awareness of operators’ working memory ability.

Based on our findings, one concrete design suggestion for automation that accommo-
dates individual differences in working memory is to provide a mechanism that allows
the user to select the degree of automation desired or to have the designer flexibly adjust
the degree of automation based on a user’s working memory ability. For example, based
on the relationship between trust and working memory, users with higher working mem-
ory may prefer less automation than users with lower working memory. Alternatively,
when automation is not perfect and the user is under high task load, designers of decision
support tools may need to provide the option of lower degrees of automation for individu-
als with low working memory ability and higher degrees of automation support for indi-
viduals with higher working memory ability.
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Note

1. The correlation between decision accuracy and working memory in the manual condition was
significantly positive, r D 0.23, p < .05, reflecting that the unaided task was moderately work-
ing memory-intensive.
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Appendix

Equation for Model 1
Level 1:

Accuracyit D b0it C rit:

Level 2:

b0i D g00 C u0i:

Equation for Model 2
Level 1:

Accuracyit Db0it Cb1itðTask loadÞCb2itðAutoSupportÞCb3itðReliabÞ
Cb4itðTask load " AutoSupportÞCb5itðAutoSupport " ReliabÞ
Cb6itðReliab " Task loadÞCb7itðAutoSupport£Reliab£Task loadÞC rit:
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Level 2:

b0i D g00 C u0i;
b1iD g10;

b2iD g20;

b3iD g30;

b4iD g40;

b5iD g50;

b6iD g60;

b7iD g70:

Equation for Model 3
Level 1:

Accuracyit Db0it Cb1itðTask loadÞCb2itðAutoSupportÞCb3itðReliabÞ
Cb4itðTask load " AutoSupportÞCb5itðAutoSupport " ReliabÞ
Cb6itðReliab " Task loadÞCb7itðAutoSupport£Reliab£Task loadÞC rit:

Level 2:

b0i D g00 C g01ðWMÞC u0i;

b1iD g10 C g11ðWMÞ;

b2iD g20 C g21ðWMÞ;

b3iD g30 C g31ðWMÞ;

b4iD g40 C g41ðWMÞ;

b5iD g50 C g51ðWMÞ;

b6i D g60;

b7i D g70:
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