

CU Cumulative Awards By Month

Clemson University Research Report Card Fiscal Year 2016 Final 3rd Qtr Report Will Be Distributed At BoT Meeting

1,738,332 \$ 1,705,355 \$ 3,785,775 \$ 1,145,583

		1	2011		2012		2013		2014	2015		2016		Data Trends
													Total	2011-2015
												A	s of 2/29/16	
RESE	ARCH INPUTS													
a. Pr	oposal Submissions (Count)		1,376		1,408		1,414		1,443		1,489		1,007	
1	ААН		55		63		40		54		64		57	
2	CAFLS		328		352		340		304		309		169	
3	CBBS		37		17		23		36		35		25	
4	COES		676		700		686		724		757		570	
5	HEHD		91		84		115		125		118		56	
6	SOE		0		0		0		0		_		29	• • • • •
7	CCIT		8		12		11		11		6		-	
8	PSA		151		157		168		163		154		77	
9	VP for Res & Interdisc Inst		15		13		11		9		5		13	
10	All Other		15		10		20		17		41		11	
b. Pr	oposal Submissions (Value)	\$	502,157,776	\$	398,713,988	\$	386,106,648	\$	547,095,092	\$	510,484,443	\$	344,926,930	
11	AAH	\$	7,325,668	\$	9,523,827	\$	3,650,477	\$	14,984,174	\$	2,470,314	\$	7,997,626	\langle
12	CAFLS	\$	121,371,081	\$	71,559,256	\$	75,291,981	\$	76,268,616	\$	6,802,669	\$	24,573,269	/
13	CBBS	\$	7,616,801	\$	7,907,829	\$	3,981,672	\$	5,922,989	\$	2,203,594	\$	7,374,910	
14	COES	\$	298,107,680	\$	249,023,166	\$	224,796,342	\$	369,099,628	\$	102,344,512	\$	261,855,541	
15	HEHD	\$	26,838,493	\$	27,529,360	\$	21,875,971	\$	32,875,243	\$	2,009,899	\$	12,548,354	
16	SOE	Ś	-	Ś	-	Ś	-	Ś	-	Ś	-	Ś	12.893.792	· · · · · ·
17	ССІТ	Ś	2.012.226	Ś	876.679	Ś	37.896.464	Ś	12.458.160	Ś	2.116.258	Ś	-	\sim
18	PSA	Ś	28.126.835	Ś	22.687.186	Ś	15.014.300	Ś	21.633.793	Ś	21.948.519	Ś	6.351.226	
19	VP for Res & Interdisc Inst	Ś	1.726.026	Ś	6.687.123	Ś	676.125	Ś	5.339.755	Ś	833.705	Ś	9.269.292	$\overline{\overline{\ }}$
20	All Other	Ś	9.032.966	Ś	2.919.562	Ś	2.923.316	Ś	8.512.734	Ś	15.868.196	Ś	2.062.920	~
c. Av	vards *	Ś	95.396.252	Ś	99.020.700	Ś	102.023.163	Ś	108.295.780	Ś	121.846.378	Ś	84.266.179	
21	ААН	Ś	2.279.404	Ś	969.469	Ś	185.075	Ś	590.154	Ś	687.135	Ś	1.312.964	
22	CAFLS	Ś	13.228.013	Ś	11.861.247	Ś	9.933.616	Ś	9.000.911	Ś	17.725.969	Ś	8.866.926	
23	CBBS	Ś	2.566.791	Ś	2.077.129	Ś	1.729.794	Ś	1.572.604	Ś	1.676.742	Ś	707.095	
24	COES	Ś	44.333.016	Ś	46.597.203	Ś	41.123.732	Ś	43.162.183	Ś	49.709.012	Ś	32.974.675	
25	HEHD	Ś	5.898.881	Ś	5.287.325	Ś	4.955.945	Ś	7.017.521	Ś	7.470.101	Ś	2.666.977	~
26	SOE	Ś		Ś	-	Ś	-	Ś	-	Ś	-	Ś	2,225,654	• • • • •
27	ССІТ	Ś	18,477,271	Ś	21.051.844	Ś	24,995,729	Ś	34,243,344	Ś	33,201,657	Ś	21,800,967	
28	PSA	Ś	5.445.654	Ś	9.776.557	Ś	16.444.018	Ś	12,284,142	Ś	9.588.294	Ś	8.381.572	
29	VP for Res & Interdisc Inst	Ś	984 725	¢ ¢	1 158 652	\$	2 192 465	Ś	268 882	Ś	573 565	Ś	4 646 950	
30	All Other	Ś	2.182.497	\$	241.274	\$	462.789	Ś	156.039	\$	1.213.903	Ś	682.398	
d. No	otable Awards	1 7	_,,	-	,	Ť	,	Ŧ		Ŧ	_,,	Ť		
31	NSE CAREER Awards (by start date)		6		5		4	1	1		3		5	
32	NIH R01-Equivalent Awards (by start date)		1		3		0		0		2		1	$\langle \rangle$
33	NIH Career Awards (by start date)		0		0		1		0					
e. SU	IPPORTING WORKFORCE:	1	-		-		_	1						
34	Graduate Student Enrollment		3.994		4.078		4.206		4.372		4.670		4.664	
35	Sponsored Graduate Research Assistants		852		805		822		745		707		555	
36	Postdoctoral Fellows	1	47		44		48	1	64	-	, <u>,,</u> 83	1	85	
37	Research Faculty: Permanent 100% Non-F&G		3		3				6		6		11	
57	Funded		5		5		0		0		Ũ			
38	Research Faculty: Temporary 100% Non-F&G		21		24		18		18		15		14	
50	Eunded		21		24		10		10		15		14	•
		-								_				/
RESE	EARCH PROCESS													•
f. Sp	onsored Research Expenditures by Business					\$	75,388,679	\$	69,907,663	\$	73,307,908		47,198,087	
Unit	**	1		1		I .		L		-		L		
39		-				\$ 	504,683	\$	378,112	Ş	419,826	\$ \$	512,890	
40	CAFLS	-				Ş	13,786,867	Ş	11,367,002	Ş	9,948,298	Ş	7,507,684	
41	CBBS	-				\$	1,906,528	\$	1,585,854	\$	1,686,018	\$	1,099,937	
42	COES	-				Ş	43,244,291	Ş	41,407,944	Ş	41,147,344	Ş	25,931,603	
43	HEHD	_				\$	5,586,560	\$	5,671,050	\$	6,782,152	\$	1,892,153	
44	SOE					\$	-	\$	-	\$	-	\$	1,613,274	· · · · · ·
45	CCIT	-				\$	1,996,620	\$	1,631,199	\$	3,400,258	\$	2,147,215	
46	PSA	-				\$	5,294,784	\$	5,598,121	\$	5,765,430	\$	3,592,400	
47	VP for Res & Interdisc Inst	1				\$	1,330,014	1\$	563,027	\$	372,808	\$	1,755,347	

\$

48 All Other

Clemson University Research Report Card Fiscal Year 2016

Final 3rd Qtr Report Will Be Distributed At BoT Meeting

		2011		2012		2013		2014	2015			2016	Data Trends
												Total	2011-2015
											A	s of 2/29/16	
g. Sp	onsored Research Expenditures by				\$	75,388,679	\$	69,907,663	\$	73,307,908		47,198,087	
Em	iphasis Area												
49	Advanced Materials				\$	14,258,840	\$	11,288,090	\$	10,713,746	\$	6,314,981	
50	Automotive & Transportation Technology				\$	4,687,300	\$	5,680,684	\$	7,236,984	\$	4,461,697	
51	Biotechnology & Biomedical Sciences				\$	11,953,360	\$	9,459,648	\$	10,060,574	\$	6,725,727	
52	Family & Community Living				\$	5,110,644	\$	4,332,146	\$	4,989,424	\$	3,051,821	\langle
53	General Education				\$	2,618,598	\$	2,929,771	\$	4,023,792	\$	2,100,630	
54	Information & Communication Technology				\$	10,277,111	\$	10,513,388	\$	10,137,409	\$	6,028,449	
55	Leadership & Entrepreneurship				\$	1,633,044	\$	1,235,240	\$	818,397	\$	650,989	
56	Other				\$	6,518,006	\$	7,591,364	\$	7,401,285	\$	5,054,479	
57	Sustainable Environment				\$	18,331,776	\$	16,877,332	\$	17,926,295	\$	12,809,314	
h. Sp	oonsored Research Expenditures by				\$	75,388,679	\$	69,907,663	\$	73,307,908	\$	47,198,087	
Fu	nding Source												
58	Federal Gov				\$	62,890,679	\$	56,872,229	\$	58,457,288	\$	38,020,374	
59	Foundations, Societies, and Associations				\$	4,221,409	\$	4,294,121	\$	4,743,649	\$	2,494,708	-
60	Industry/Other				\$	4,930,465	\$	5,641,543	\$	6,069,562	\$	4,448,396	
61	International				\$	813,542	\$	577,879	\$	765,179	\$	479,671	
62	Local Gov				\$	597,732	\$	614,527	\$	578,235	\$	345,802	
63	State Gov				\$	1,934,852	\$	1,907,364	\$	2,693,993	\$	1,409,138	
i. Spo	onsored Research Expenditures per T/TT												
Fac	ulty by College												
64	ААН				\$	3,115	\$	2,264	\$	2,345	\$	2,914	
65	CAFLS				\$	93,788	\$	77,856	\$	65,022	\$	47,218	
66	CBBS				\$	13,916	\$	11,168	\$	11,628	\$	7,333	
67	COES				\$	146,096	\$	134,006	\$	132,733	\$	83,381	/
68	HEHD				\$	51,253	\$	48,060	\$	56,518	\$	31,536	
69	SOE				\$	-	\$	-	\$	-	\$	28,303	• • • •
RESE	ARCH OUTPUTS/OUTCOMES												
70	Doctorates Awarded (Aug. Dec. May)	192		220		187		217		237		162	· · · ·
71	STEM Doctorates Awarded (Aug. Dec. May)	132		145		118		153		165		102	
72	Disclosures	130		114		102		129		70		23	
73	Patents	20		14		16		15		15		7	· · · ·
74	Licenses/Options	12		11		9		7		7		-	
75	Licensing Revenue	\$ 937.273	Ś	853.504	Ś	1.134.289	Ś	762.811		360.131		68.889	
76	Start-up Companies (based on	+	-	,	-	_/ //	Ŧ	,					\wedge
	licenses/ontions above)	2		6		1		4		4			
TUE		_		-		2012		2014		2015		2016	·
THE						2013	6	2014	~	2015		2016	
* Aw	ards Total (pg. 7, Annual Report)				Ş	102,023,163	Ş	108,295,780	Ş	121,846,378			
** Research Expenditures					\$	75,388,679	>	69,907,663	\$	73,307,908			
Other Sponsored Programs Expenditures					Ş	26,827,035	Ş	28,3/1,149	Ş	32,569,780			
C	Less CURF Indirect Expenditures	4.4	,		\$ ¢	1,303,354	Ş	/43,951	Ş	684,695			
Spon	sored Research and Programs Expenditures (pg	. 1, Annual Report)		Ş	100,912,360	Ş	97,534,861	Ş	105,192,993	1		
* C							-				-		
** C							-				-		
···· 26	e section T. above		1										

Top 10 Awards FY2016 Jan - Mar 8th

Meeting	;					Project	
Date	PI Full Name	PI Department	Sponsor	Project Title	Award Date	Total Award	Subcontracted Collaborators
Apr-16	6 Frager, Robert D	Youth Learning Institute	SC Dept of Social Services	ICSS Employment and Training	1/15/2016	\$ 2,337,693	None
Apr-16	6 Pilla, Srikanth	Automotive Engineering	Department of Energy	Functionally Designed Ultra-Lightweight Carbon Fiber Reinforced Thermoplastic Composites Door Assembly	2/2/2016	\$ 2,249,994	Univ. of Deleware
Apr-16	6 Cole, Christine W	Material Science and Engineering	Wal-Mart Foundation	Energy and Effluent Reduction Through Innovative Dyeing of Polyester Fabrics	1/19/2016	\$ 964,332	Hills Engineering, Burlington Worldwide, Mount Vernon
Apr-16	6 Ding, Feng	Physics & Astronomy	National Science Foundation	CAREER: Multiscale Study of the Structure and Dynamics of Nanoparticle-Protein Coronae	2/16/2016	\$ 506,569	None
Apr-16	6 Getman, Rachel B	Chemical Engineering	National Science Foundation	CAREER: Hierarchical Modeling for Rational Catalyst Design in Aqueous Conditions	2/16/2016	\$ 503,922	None
Apr-16	6 Ross, Brandon E	Civil Engineering	National Science Foundation	CAREER: Quantifying the Adaptability of Building Structures, Envelopes, and Foundations	1/20/2016	\$ 500,000	None
Apr-16	6 Perahia, Dvora	Chemistry	National Science Foundation	Computational-Experimental Insight across Time and Length Scales of Dynamics in Ionic Polymers	3/1/2016	\$ 426,000	None
Apr-16	6 Schnabel, Guido	Ag & Environmental Sciences	USDA	Adaptation of Intelligent Spray Application Technologies in Peach Orchards	1/2/2016	\$ 209,718	None
Apr-16	6 Jiang, Xuiping	Food, Nutrition & Package Sci	Center for Produce Safety	Validating a physically heat-treated process for poultry litter in industry settings using the avirulent Salmonella surrogates or indicator microorganisms.	2/5/2016	\$ 193,917	None
Apr-16	6 Mueller, John D	Edisto Research & Educ Center	California Strawberry Growers Assoc.	Identification of Inoculum Sources and the Development of Methods to Reduce Dispersal of Xanthomas fragariae to minimize its impact on international trade of strawberry nursery stock.	1/28/2016	\$ 181,860	None

Top 10 Awards Project Abstracts FY2016 Jan - Mar 8th

PI Full Name	Project Title	Abstract
Frager, Robert D	ICSS Employment and Training	In consultation with DSS, the University will provide the services, training, and evaluation necessary to effect theimplementation of policies, procedures, and system changes to: 1) Increase the contributions of parents to the financial support of their children by helping themremove barriers to employment or improved employment; 2) Improve and further develop working relationships between staff in CSS and others involved inpromoting employment of non-custodial parents including DSS' Economic Services staff and otherState, local, and community based partners; 3) Assisting in the development and implement a formal training program for all CSS change necessaryto child support services. 4) Analyze and evaluate program components to determine the effectiveness of various programmodels and strategies.
Pilla, Srikanth	Functionally Designed Ultra-Lightweight Carbon Fiber Reinforced Thermoplastic Composites Door Assembly	The objectives of the project are: to employ a systems approach to radically redesign,manufacture and validate a fully functional ultra-lightweight carbon fiber reinforcedthermoplastics composites door assembly for a 2013 mid-size SUV (with a production volume of50,000 units/yr) that meets or exceeds the fit, function, safety, stiffness, crash performance andNVH requirements of the baseline door while achieving a weight reduction > 42.5% at the costof < \$5/lb of weight saved.
Cole, Christine W	Energy and Effluent Reduction Through Innovative Dyeing of Polyester Fabrics	Polyester now represents the majority of the fiber consumption in the world. However, polyesteris one of the more difficult fibers to dye. Due to the chemical and physical structure of the fibers, small dye molecules and high temperatures/pressures and/or hazardous chemicals are required tosatisfactorily color polyester fabrics. These manufacturing conditions mean that the dyeing isenergy intensive as well as produces significant amounts of colored effluent. It is estimated that200,000 tons of dyestuff are lost each year in the effluent from commercial dyeing operations; perhaps 20% of this dyestuff effluent can be attributed to dyeing polyester. Investigators propose to: (1) Reduce the amount of dyestuff required to color polyester, (2) Reduce theenergy required to color polyester, and (3) Reduce the amount of colored effluent from polyesterdyeing processes. Our strategy builds on commercially available components but assembles themin innovative ways. Our processes will readily fit within current US textile manufacturingprocesses.
Ding, Feng	CAREER: Multiscale Study of the Structure and Dynamics of Nanoparticle-Protein Coronae	With the rapid development of nanotechnology, engineered nanoparticles (NPs) may be released to the environmental and biological systems either purposely or accidentally. With many proteins enriched in the environmental and biological media as the functional building blocks, they can be absorbed onto the NP surface, forming the so-called NP-protein corona. It is the protein coronae rather than the original NPs that are "seen" by cells and tissues and subsequently determine the biological and/or pathological functions of these released NPs. The objective of this proposal is to develop and apply state-of-the-art computer simulation methods to understand the fundamental aspects of the corona formation and to determine the physical and chemical properties of NPs that dictate the protein absorption. The obtained knowledge will help guide the design of novel NPs that promotes the intended biological functions and prevents the unintended pathological responses, enabling the "safe-by-design" to the broad scientific and engineering community for modeling and predicting corona formation and rapid risk assessment of NP exposures.
Getman, Rachel B	CAREER: Hierarchical Modeling for Rational Catalyst Design in Aqueous Conditions	The proposed research will refine molecular simulation models for catalytic reactions in the presence of liquid water and apply the calculations to an electrochemical process for ammonia synthesis that could potentially replace the long-standing, but energy intensive, Haber-Bosch gas phase process. The research is integrated with an educational plan that introduces molecular level simulation concepts to students across levels ranging from high school to graduate research.
Ross, Brandon E	CAREER: Quantifying the Adaptability of Building Structures, Envelopes, and Foundations	This research will study domestic and international building projects to identify the physical aspects of buildings that make them likely to be demolished or adapted. Findings from the research will be used to create tools that architects and engineers can apply to design adaptable urban buildings. Such buildings will promote economic, social, and environmental sustainability of cities as they address unprecedented and accelerating trends in urbanization, climate change, and technological advancement. University students and industry practitioners will participate in all phases of the research and will be instructed on the theory and practice of adaptable building design.

Top 10 Awards Project Abstracts FY2016 Jan - Mar 8th

PI Full Name	Project Title	Abstract
Perahia, Dvora	Computational-Experimental Insight across Time and Length Scales of Dynamics in Ionic Polymers	The design of new materials is one critical aspect of engineering new platforms that will augment the energy security of the nation, impact health, and enhance economic competitiveness. Driving innovation in technologies such as clean energy generation and storage and numerous biomedical technologies requires new materials that can serve in different capacities simultaneously. One promising class of materials consists of very large molecules (polymers) able to transport ions and electrons while retaining their mechanical integrity, often under extreme conditions of high temperatures, solvents, and external stresses that may affect their performance. The ability of these materials to play multiple roles is attained by tailoring molecular segments with different chemical functionalities into one large molecule, including blocks for transporting ions and electrons and blocks to provide mechanical stability. Controlling the way these segments organize and perform electrically as they are integrated into devices is key to the design of new effective platforms. In this project, using large-scale computational studies coupled with state-of-the-art neutron measurements, the effects of the structure of these polymers will be correlated with their dynamics as they are exposed to high temperatures and solvents. The projected results will provide the understanding that will enhance the ability to design well-controlled multi-functional polymers, tailored with desired properties for specific applications. The project is closely integrated with interdisciplinary education and training of graduate and undergraduate students and high-school outreach.
Schnabel, Guido	Adaptation of Intelligent Spray Application Technologies in Peach Orchards	The PI will examine the intelligent sprayer for disease and insect management in peach orchards. The studywill be conducted over three years at a commercial orchard near Ridge springs. PI will examine majordiseases and pest incidence, spray distribution and calculate spray solution savings compared to conventional sprayers.
Jiang, Xuiping	Validating a physically heat-treated process for poultry litter in industry settings using the avirulent Salmonella surrogates or indicator microorganisms.	Poultry litter is an excellent source of nutrients for the growth of agricultural crops. In order toreduce the microbiological risks associated with the use of raw poultry litter as a soilamendment or organic fertilizer, physical heat treatments are recommended to reduce oreliminate potential pathogenic microorganisms. Our recent studies have demonstrated thatthermal resistance of Salmonella in chicken litter was increased significantly when cells wereadapted to desiccation or aged chicken litter with low moisture content was heat-treated. Byincreasing moisture level in chicken litter or applying a two-step heat treatment (wet heat thendry heat), Salmonella can be inactivated much rapidly. Additionally, our preliminary resultsindicate a good correlation in thermal inactivation rates between desiccation-adaptedSalmonella and indigenous enterococci in chicken litter, suggesting enterococci as a potentialindicator for heat process validation. In this proposed study, we'll collaborate with two largepoultry litter processors to validate their physically heat-treated process in the industry settingsby using Salmonella surrogate and indicator microorganisms identified in this study. Resultsfrom this research will provide some valid guidelines and tools for the fertilizer industry toproduce physically heat-treated poultry litter as Salmonella-free, thereby ensuring safeproduction of fresh produce.
Mueller, John D	Identification of Inoculum Sources and the Development of Methods to Reduce Dispersal of Xanthomas fragariae to	Clemson agrees to do the following projects associated with objectives (iv) and (v) of the TASC proposal "Identification of inoculum sources and the development of methods to reduce dispersal of Xanthomas fragariaeto minimize its

impact on international trade of strawberry nursery stock."

minimize its impact on international trade of strawberry

nursery stock.