Sticky Nanoparticles Can Help Mend Broken Hearts
February 19, 2014

Researchers at Clemson University have developed a promising, non-invasive way to fight heart disease by using nanoparticles coated with a sticky protein to deliver drugs to clogged or damaged arteries.

The researchers, led by Clemson bioengineering professor Naren Vyavahare, hope their breakthrough could someday supplement, or even replace, traditional heart disease treatments such as vascular stents, which hold blood vessels open and release drugs like paclitaxel.

"Healthy arteries have elastic fibers that provide elasticity. They are like rubber bands in the tissue that allow expansion and recoil during blood flow," Vyavahare explained.

"In most cardiovascular diseases, elastic fibers in arteries get damaged, creating hooks that can be used to target drugs."

The nanoparticles developed by the Clemson researchers latch onto these damaged arteries to deliver a drug to the site in slow-release manner. The nanoparticles can be engineered to deliver a variety of drugs, including paclitaxel, which inhibits cell division and helps prevent the growth of scar tissue that can clog arteries. The nanoparticles also have unique surfaces that allow prolonged circulation time, providing more opportunities for the particles to accumulate at the damage site, the researchers said.
Fighting Heart Disease With Sticky Nanoparticles - Health News - redOrbit

[Watch the Video: Velcro-Like Nanoparticles Mend Broken Hearts]

"We developed nanoparticles that have antibodies on the surface that attach to diseased sites like Velcro," said Vyavahare.

"Interestingly, these newly created nanoparticles only accumulate at the damaged artery, not in the healthy arteries, enabling site-specific drug delivery."

Clemson graduate student Aditi Sinha, lead author on a paper about the work that will soon be published in the journal Nanomedicine: Nanotechnology, Biology and Medicine, noted that the particles could be administered intravenously to allow prolonged treatment.

"These nanoparticles can be delivered intravenously to target injured areas and can administer drugs over longer periods of time, thus avoiding repeated surgical interventions at the disease site," she said.

The researchers said their work is an encouraging step toward new treatments for cardiovascular and other diseases. The Clemson team is currently testing the nanoparticles to determine the most effective drug dosage for vascular tissue repair. However, the technology offers hope for a variety of other diseases as well, such as chronic obstructive pulmonary disease, Marfan syndrome and elastic fiber-related disorders such as aortic aneurysms.

Source: redOrbit Staff & Wire Reports - Your Universe Online

Topics: Health Medical Pharma, Nanomedicine, Nanomaterials, Nanotechnology, Physics, vascular disease, Nanoparticle

You Might Like

Bulldog Sleeps with CPAP Machine (Easy Breathe)
How your kids can make their own crystals (SheKnows.com)
A Fool-Proof Formula for Easily Writing Amazing Blog Posts (HubSpot)
Gaming for a Higher Purpose: Crowdsourcing to Find Vulnerabilities in Mission-critical Software (SRI International)
Deborah Norville: "Devastated" By Rheumatoid Arthritis (Lifescript.com)

Space-Age Clothing from Ministry of Supply - In Photos: 10 Ingenious Gifts For Travelers (Forbes.com)
Living with Psoriasis - Top 10 ways to Do it (Health Central)
10 Drugs That May Cause Memory Loss (AARP)
LogMeIn CEO: 'Internet of Things' could become our largest biz (Boston Business News)
10 Signs You May Have a Blood Clot in Your Leg (ActiveBeat)

Recommended by

Related Videos

Velcro-Like Nanoparticles Mend Broken Hearts
Juggling For Prosthetics Research
Young, Healthy Adults Should Get A Flu...Fighting Cancer with Nanotechnology
Finding Cancer with Nanotechnology
Explaining Metamaterials
Coal Yields Production of Graphene Quantum...
Cats Inspire Nanotechnology Whiskers For...
Scientists Have Been Using Nanotech to...
Festooning Loops
Saturn Puts On Quite A Light Show
Solar Dynamics Observatory: Year 4

Related Images

Fluorescent Nanoparticles (Image 3)
Fluorescent Nanoparticles (Image 1)
Fluorescent Nanoparticles (Image 2)
Mouse Bone Cells Cultured on Nanofibers
Graphite Oxide/Poly(styrene) Blends on Nylon Filter Paper
On-chip Super Absorber Catches Rainbows
Advanced Technological Education Centers (Image 8)
Children participate in NanoDays
Invention jet prints nanostructures with self-assembling material
ISS030-E-142827
Genetic on-off switches pinpointed
ISS030-E-257690
Pulses from the Sun
Pulses from the Sun
Festooning Coronal Loops

Related Reference Library

Obesophobia
Pharmacophobia
Phobophobia
Cosmology
Coma Cluster
Cosmology

Most Recent Blogs

Fighting Heart Disease With Sticky Nanoparticles - Health News - redOrbit

Games Yet Played: A Song Of Ice And Fire
Daily Round-Up For February 19, 2014
All These Benefits: Reasons to Read More (Part One)
Sumatran Tiger Nears Extinction
Clear Snowy Driveways From Indoors With A Snowplow Droid
What Is Next For D&D?
Luring Out Cancer
Marty McFly Power Laces Coming Soon
Winter Running And Walking The Safe Way
The Death Of A Ship

Post a new comment
Login

0 Comments
RSS | Subscribe

A Simple Way to Lose Pounds and Relieve Gas and Bloating
New Muscle Building Science Lets Smaller Guys Bulk Up Fast

Breaking News
Space
Science
Technology
Health
CES 2014
More...

Streaming Video
YouTube Channel
Top Picks
Science
Health
More...

Images and Photos
Images of the Day
Image Galleries
Wallpapers
More...

Space Exploration
Astronomy
Human Spaceflight
Ask the Astronomer
Mars Science Laboratory
More...

Science and Research
Instruments
Calculator
Ask the Scientist
More...

Technology
Ask the Expert
Technology Reviews
More...

My Health
Health
More...

Mobile Widgets Advertising About Us Contact Us Privacy Statement Terms of Service Abuse Reporting Search Topics Feeds Jobs Podcasts

© 2002-2014 redOrbit.com. All rights reserved
All other copyrights remain the property of their respective owners