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Overview and Motivation
Micropolar elasticity theory is an extension of classical elasticity 

theory that incorporates a rotational degree of freedom. This rotational 
degree of freedom, ϕ, allows micropolar elasticity to better model 
porous materials, such as honeycombs and other periodic lattice 
structures.

Periodic lattice structures can be accurately modeled as a network of 
beams, therefore the entire displacement behavior of the lattice can be 
described by the displacement and rotation of the nodes. Micropolar 
elasticity’s ϕ, is equivalent to the rotation of the nodes in the lattice. 
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Progress Made
This research is based on a pair of in-house Finite Element (FE) 

simulations. The codes simulates one of the lattice structures 
considered in [1] and an equivalent micropolar continuum using the 
material properties found in [1]. Both codes apply the same boundary 
conditions, have the same macro-size, and return the totals of the 
forces on the prescribed displacement face. An error metric is 
calculated based on the squared percent difference. Comparisons of 
the displacement are also available. Figure 2 shows the lattice types 
used in the code. Figure 3 shows a pair of simulations. 

For more information, please contact
Marcus Yoder at MarcusY@Clemson.edu

Figure 3: Simulations of a triangular lattice in shear (left) and its 
equivalent micropolar continuum (right).

Figure 1: Displacement and 
Rotation of node points in a 

portion of a triangular lattice. 
Reference configuration in gray. 
Deformed configuration in blue.

Early Investigations
In order to investigate whether the material properties from [1] give a 

smaller error metric than any other set of material properties, the tool 
was tied to an optimization routine to minimize the error, by varying the 
material properties. The material properties that gave the minimum 
error for all four lattices was different from the properties given by [1] 
by an order of magnitude.

This suggests that the comparison tool is not functioning properly.

Equations 1: Basic equations for planar isotropic micropolar elasticity. 
σij and εij are the stress and strain on the i face in the j direction.
λ and μ, are Lame’s constants. κ, and γ are material constants for 
micropolar elasticity.
mi3 and ki3 are the couple stress and curvature on the i face around the 
out of plane axis.

The partial derivatives of ϕ, curvature, are linked to an additional 
quantity called couple stress, in the same way that classical strain is 
related to force stress. The material properties of planar isotropic 
micropolar materials are fully characterized by 4 material constants. For 
simplicity, this poster restricts the discussion to planar isotropic lattice 
structures.

Various authors [1] have derived effective properties for lattices, or 
written tools to automate the process. Each of these authors did some 
validation to check that their derived material properties produce 
micropolar behavior that approximately matches the lattice behavior 
under ideal conditions. This research will investigate the how 
parameters like macro-size and boundary conditions affect the quality 
of that comparison.

Figure 2: 4 types of lattices analysed by [1] and examined in this research.

Future work
In the short term, the tool needs to be checked for consistency and 

verify that every part of the code works.
In the long term, if micropolar elasticity theory can provide good 

comparisons, the theory can be extended to acoustic wave propagation 
and insulation. Lattice structures have the potential to combine good 
acoustic insulation with, high stiffness and high specific strength.
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Figure 4: Micro-rotation of the lattices shown in Figure 3.
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