A Haptic Interface with Adjustable Feedback for Unmanned Aerial Vehicles
(UAVs) —Model, Control, and Test

Department of Mechanical Engineering, Clemson University
Sheng Fu, Ph.D. student
Advisor: John Wagner, Professor

Introduction How It Works

e UAV (Unmanned Aerial
Vehicle) applications
—Environmental monitoring
—Agricultural chemical

spraying
—Land management
—Merchandise delivery
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To increase awareness for operators, a
three degree-of-freedom haptic interface
is introduced to provide helpful

assistance for UAV motion control.
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"Model

Mathematical model of
haptic device can provide relationship
between end point position and motor
angle motion.
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A kinematic model is established to derive the
Jacobian matrix and the inverse kinematics of

the manipulator to solve positioning and
velocities problems. W~ Gravity
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