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Motivation

Current gas-turbine engines, manufactured from nickel and cobalt
based superalloys , have reached their maximum efficiency limits.
These gas-turbines are being operated within 50°C of the material
melting points, needing significant internal cooling of components.
However, it is imperative to increase their operating temperatures to
improve cycle efficiency and reduce emissions. Hence the Ceramic
Matrix Composites (CMCs) are beginning to replace the superalloys in
gas turbines.

Thus far, development of CMCs has been predominantly
experimental, which is costly and time consuming. A computer aided
model is developed here to predict microstructure-property
relationship for the CMCs. This model will provide predictive
capabilities to complement the experimental efforts, thereby
reducing future CMC development cost and time.
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What advantages do they offer?

« SiC/SiC CMCs melt around 2800°C
while super alloys melt close to 1300°C.

* CMCs, will thus drastically increase
engine-operating temperatures.

« It means, higher efficiency and lower
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« Hence , CMCs will increase the Year
power-to-weight ratio, critical for aviation gas-turbines.

* Thus CMCs are light weight material which exhibit metal-like
ductile behaviour along with ceramic-like excellent high
temperature strength-retention.

INn-service material degradation effects

The high temperature thermo-mechanical effects are included by
making the CMC component scale properties functions of the nature,
duration and extent of exposure.
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Location of CMC components in
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 Currently targeted for use in
hot-sections, i.e. turbine &
combustor sections of gas-turbines.
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* Being a new class of material,
only stationary components,
i.e. inner shroud and combustor
liners which experience low
in-service loads , are presently
made from CMCs.

* The inner shroud reduces blade-tip X/
clearance to minimize loss of combustion gases
It also acts as a heat shield for the turbine casing.

Close up of gas-turbine hot-sections

Commercial benefits and future of CMCs

* Once the stationary components are successfully deployed in
aviation and land-based turbines, the cycle efficiency is expected
to increase by 2% and 75% reduction in NO,, CO and unburnt
hydrocarbon emissions.

» This translates to annual fuel savings of about $700 million for a
fleet of 500 aircrafts.

* In future, moving components, e.g. blades and shafts, which
experience high in-service stresses will be made from CMCs,
contributing to higher operating temperatures, lighter engines
generating even bigger profits.

Concluding remarks

A multi-length scale computational model is developed for predicting
microstructure-property relationships for CMCs. This model will
complement future experimental design efforts by providing predictive
capabilitites to reduce development time and cost.

For more information, please contact
Rohan Galgalikar at (rgalgal@g.clemson.edu)




	Slide Number 1

