Menu

Nov. 29, 2018- ChBE Seminar Speaker- Dr. Christopher E. Wilmer, Department of Chemical and Petroleum Engineering, University of Pittsburgh

November 28, 2018

The Department of Chemical and Biomolecular Engineering welcomes Dr. Christopher E. Wilmer, an assistant professor in the Department of Chemical and Petroleum Engineering at the University of Pittsburgh where he directs the Hypothetical Materials Lab. The lab’s research focuses on advanced uses of porous crystals, such as in developing artificial noses or storing oxygen.

His seminar titled, “Understanding Thermal Transport in Porous Crystals” will take place on Thursday, November 29 from 2:00-3:00pm in Earle 100.

Highly porous materials are very useful for chemical separations, catalysis, and gas storage. The last twenty years has been particularly exciting in this area because of the discovery of highly porous crystals called metal-organic frameworks (MOFs). By changing the building blocks used in their self-assembly, their pore structures can be tuned to target specific applications, and in two decades, over 70,000 different MOFs have been reported in the literature.

However, an important property for the practical implementation of MOFs as industrial adsorbents has received relatively little attention over that time: thermal transport. Whenever gases are rapidly loaded and unloaded in porous materials, there is a sharp increase and decrease of temperature. In just the last few years, understanding of thermal transport in porous crystals, and MOFs in particular, has increased significantly. Through molecular simulations, we have investigated the thermal conductivity of MOFs both as a function of their pore structure and also as function of gas loading [1-2]. An important observation of the Hypothetical Materials Lab, which is contested and for which experimental support is scarce, is that thermal conductivity of MOFs generally decreases in the presence of adsorbed gases [3]. This observation, if found to be hold as a general phenomenon, implies greater challenges for MOFs as gas adsorbents: not only are they typically insulating materials to begin with, but their insulating nature is exacerbated by the presence of gases. In this talk, Dr. Wilmer presents his collected evidence on this important phenomenon and outline potential strategies to control and mitigate unwanted thermal effects in gas adsorption scenarios.

Dr. Wilmer received his B.A.Sc. degree from the University of Toronto’s Engineering Science’s Nanoengineering program. While pursuing a Ph.D. in Chemical Engineering at Northwestern under the mentorship of Prof. Randall Q. Snurr, he took an interest in the American way of developing new technologies—through entrepreneurship. While still a student, he co-founded, NuMat Technologies, which develops commercial gas storage solutions using MOFs, for which he was named to the Forbes Top 30-Under-30 list in Energy Innovation. The Hypothetical Materials Lab he directs at the University of Pittsburgh recently spun-out Aeronics, which manufactures inexpensive oxygen storage containers for people with decreased lung function.